567 research outputs found

    Observable Effects of Scalar Fields and Varying Constants

    Get PDF
    We show by using the method of matched asymptotic expansions that a sufficient condition can be derived which determines when a local experiment will detect the cosmological variation of a scalar field which is driving the spacetime variation of a supposed constant of Nature. We extend our earlier analyses of this problem by including the possibility that the local region is undergoing collapse inside a virialised structure, like a galaxy or galaxy cluster. We show by direct calculation that the sufficient condition is met to high precision in our own local region and we can therefore legitimately use local observations to place constraints upon the variation of "constants" of Nature on cosmological scales.Comment: Invited Festscrift Articl

    Dynamical System Approach to Cosmological Models with a Varying Speed of Light

    Get PDF
    Methods of dynamical systems have been used to study homogeneous and isotropic cosmological models with a varying speed of light (VSL). We propose two methods of reduction of dynamics to the form of planar Hamiltonian dynamical systems for models with a time dependent equation of state. The solutions are analyzed on two-dimensional phase space in the variables (x,x˙)(x, \dot{x}) where xx is a function of a scale factor aa. Then we show how the horizon problem may be solved on some evolutional paths. It is shown that the models with negative curvature overcome the horizon and flatness problems. The presented method of reduction can be adopted to the analysis of dynamics of the universe with the general form of the equation of state p=γ(a)ϵp=\gamma(a)\epsilon. This is demonstrated using as an example the dynamics of VSL models filled with a non-interacting fluid. We demonstrate a new type of evolution near the initial singularity caused by a varying speed of light. The singularity-free oscillating universes are also admitted for positive cosmological constant. We consider a quantum VSL FRW closed model with radiation and show that the highest tunnelling rate occurs for a constant velocity of light if c(a)anc(a) \propto a^n and 1<n0-1 < n \le 0. It is also proved that the considered class of models is structurally unstable for the case of n<0n < 0.Comment: 18 pages, 5 figures, RevTeX4; final version to appear in PR

    A time-space varying speed of light and the Hubble Law in static Universe

    Get PDF
    We consider a hypothetical possibility of the variability of light velocity with time and position in space which is derived from two natural postulates. For the consistent consideration of such variability we generalize translational transformations of the Theory of Relativity. The formulae of transformations between two rest observers within one inertial system are obtained. It is shown that equality of velocities of two particles is as relative a statement as simultaneity of two events is. We obtain the expression for the redshift of radiation of a rest source which formally reproduces the Hubble Law. Possible experimental implications of the theory are discussed.Comment: 7 page

    Variable Modified Chaplygin Gas and Accelerating Universe

    Full text link
    In this letter, I have proposed a model of variable modified Chaplygin gas and shown its role in accelerating phase of the universe. I have shown that the equation of state of this model is valid from the radiation era to quiessence model. The graphical representations of statefinder parameters characterize different phase of evolution of the universe. All results presented in the letter concerns the case k=0k=0.Comment: 7 Latex pages, 5 figures, revtex styl

    Regularizing cosmological singularities by varying physical constants

    Full text link
    Varying physical constant cosmologies were claimed to solve standard cosmological problems such as the horizon, the flatness and the Λ\Lambda-problem. In this paper, we suggest yet another possible application of these theories: solving the singularity problem. By specifying some examples we show that various cosmological singularities may be regularized provided the physical constants evolve in time in an appropriate way.Comment: 9 pages, 6 figures, Revtex4-1, an improved version to appear in JCA

    Scaling Solutions and reconstruction of Scalar Field Potentials

    Get PDF
    Starting from the hypothesis of scaling solutions, the general exact form of the scalar field potential is found. In the case of two fluids, it turns out to be a negative power of hyperbolic sine. In the case of three fluids the analytic form is not found, but is obtained by quadratures.Comment: 5 pages, 2 figures, some changes in references and figures caption

    Dynamics of Logamediate and Intermediate Scenarios in the Dark Energy Filled Universe

    Full text link
    We have considered a model of two component mixture i.e., mixture of Chaplygin gas and barotropic fluid with tachyonic field. In the case, when they have no interaction then both of them retain their own properties. Let us consider an energy flow between barotropic and tachyonic fluids. In both the cases we find the exact solutions for the tachyonic field and the tachyonic potential and show that the tachyonic potential follows the asymptotic behavior. We have considered an interaction between these two fluids by introducing a coupling term. Finally, we have considered a model of three component mixture i.e., mixture of tachyonic field, Chaplygin gas and barotropic fluid with or without interaction. The coupling functions decays with time indicating a strong energy flow at the initial period and weak stable interaction at later stage. To keep the observational support of recent acceleration we have considered two particular forms (i) Logamediate Scenario and (ii) Intermediate Scenario, of evolution of the Universe. We have examined the natures of the recent developed statefinder parameters and slow-roll parameters in both scenarios with and without interactions in whole evolution of the universe.Comment: 28 pages, 20 figure

    Variable-Speed-of-Light Cosmology from Brane World Scenario

    Get PDF
    We argue that the four-dimensional universe on the TeV brane of the Randall-Sundrum scenario takes the bimetric structure of Clayton and Moffat, with gravitons traveling faster than photons instead, while the radion varies with time. We show that such brane world bimetric model can thereby solve the flatness and the cosmological constant problems, provided the speed of a graviton decreases to the present day value rapidly enough. The resolution of other cosmological problems such as the horizon problem and the monopole problem requires supplementation by inflation, which may be achieved by the radion field provided the radion potential satisfies the slow-roll approximation.Comment: 18 pages, LaTeX, revised version to appear in Phys. Rev.

    One loop renormalization of the four-dimensional theory for quantum dilaton gravity.

    Get PDF
    We study the one loop renormalization in the most general metric-dilaton theory with the second derivative terms only. The general theory can be divided into two classes, models of one are equivalent to conformally coupled with gravity scalar field and also to general relativity with cosmological term. The models of second class have one extra degree of freedom which corresponds to dilaton. We calculate the one loop divergences for the models of second class and find that the arbitrary functions of dilaton in the starting action can be fine-tuned in such a manner that all the higher derivative counterterms disappear on shell. The only structures in both classical action and counterterms, which survive on shell, are the potential (cosmological) ones. They can be removed by renormalization of the dilaton field which acquire the nontrivial anomalous dimension, that leads to the effective running of the cosmological constant. For some of the renormalizable solutions of the theory the observable low energy value of the cosmological constant is small as compared with the Newtonian constant. We also discuss another application of our result.Comment: 21 pages, latex, no figures

    Fine-structure constant variability, equivalence principle and cosmology

    Full text link
    It has been widely believed that variability of the fine-structure constant alpha would imply detectable violations of the weak equivalence principle. This belief is not justified in general. It is put to rest here in the context of the general framework for alpha variability [J. D. Bekenstein, Phys. Rev. D 25, 1527 (1982)] in which the exponent of a scalar field plays the role of the permittivity and inverse permeability of the vacuum. The coupling of particles to the scalar field is necessarily such that the anomalous force acting on a charged particle by virtue of its mass's dependence on the scalar field is cancelled by terms modifying the usual Coulomb force. As a consequence a particle's acceleration in external fields depends only on its charge to mass ratio, in accordance with the principle. And the center of mass acceleration of a composite object can be proved to be independent of the object's internal constitution, as the weak equivalence principle requires. Likewise the widely employed assumption that the Coulomb energy of matter is the principal source of the scalar field proves wrong; Coulomb energy effectively cancels out in the continuum description of the scalar field's dynamics. This cancellation resolves a cosmological conundrum: with Coulomb energy as source of the scalar field, the framework would predict a decrease of alpha with cosmological expansion, whereas an increase is claimed to be observed. Because of the said cancellation, magnetic energy of cosmological baryonic matter is the main source of the scalar field. Consequently the expansion is accompanied by an increase in alpha; for reasonable values of the framework's sole parameter, this occurs at a rate consistent with the observers' claims.Comment: RevTeX-4, 22 pages, no figures, added a section on caveats as well as several new references with discussion of them in body. To appear in Phys. Rev.
    corecore